256 research outputs found

    Estudio Socioeconómico Del Municipio De Pueblo viejo

    Get PDF
    El Municipio de Pueblo viejo se encuentra localizado en el sector Noroccidental del Departamento del Magdalena, dentro de la región fisiográfica del Delta Exterior del Río Magdalena, a 11°00' de latitud Norte y a 74°17' de longitud Oeste de Greenwich, con una extensión total de 49.700 Ha. Goza de inmejorables condiciones de ubicación para alcanzar un Óptimo desarrollo en todas las actividades que en él se realizan cuáles son fundamentalmente: la pesca, la ganadería y la agricultura, pero a pesar de esto, es decir, del Mar Caribe, la Ciénaga Grande de Santa Marta, los fértiles suelos, disposición de la mejor riqueza hídrica del Departamento, buen clima, regular precipitación y gran extensión, su desarrollo en el campo se encuentra entrabado. Muchas riquezas naturales se han destruido. La Ciénaga Grande de Santa Marta se encuentra en perfecto progresivo de contaminación debido al uso irracional de los pesticidas agrícolas, característica del individualismo capitalista. El sector pesquero a pesar de la extensión del mar y de la Ciénaga Grande de Santa Marta y de su riqueza marina, coma los sectores anteriores, se encuentra sometido también al marco del atraso. Todos los métodos e instrumentos de pesca son rudimentarios, la explotación tecnificada y el procesamiento de los productos se lleva a cabo para empresas de capital mixto, los habitantes del municipio a pesar de las riquezas de es te, no disponen de los mínimos servicios que le garanticen adecuadas condiciones para su salud. En cuanto a educación se refiere, a pesar de las características del municipio de que la mayoría de sus habitantes son jóvenes, son pocas las escuelas y colegios que existen y los que están se encuentran en muy malas condiciones. En resumen, el municipio es rico por naturaleza, pero se encuentra empobrecido por el poder de la burguesía, terratenientes y la dominación extranjera que padece nuestro país

    Posterior reversible encephalopathy syndrome in a child with cyclical vomiting and hypertension: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Posterior reversible encephalopathy syndrome is characterized by headache, nausea and vomiting, seizures and visual disturbances. It has certain characteristic radiological features, which allow diagnosis in the appropriate clinical setting and enable appropriate clinical therapy to be instituted.</p> <p>Case presentation</p> <p>A 10-year-old Caucasian girl who was hospitalized due to recurrent vomiting was diagnosed as having posterior reversible encephalopathy syndrome after an initial diagnosis of cyclical vomiting and hypertension was made.</p> <p>Conclusion</p> <p>Posterior reversible encephalopathy syndrome is a rare disorder in children. Early recognition of characteristic radiological features is key to the diagnosis as clinical symptoms may be non-specific or mimic other neurological illnesses. To the best of our knowledge this is the first case to report an association between posterior reversible encephalopathy syndrome, cyclical vomiting and hypertension. Furthermore, in this case, the resolution of the abnormalities found on magnetic resonance imaging over time did not appear to equate with clinical recovery.</p

    The Mast Cell Degranulator Compound 48/80 Directly Activates Neurons

    Get PDF
    Background Compound 48/80 is widely used in animal and tissue models as a “selective” mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. Methodology/Principal Findings We used in vivo recordings from extrinsic intestinal afferents together with Ca++ imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca++ and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca++ transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H1 and H2 antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca++ transients in mast cell-free enteric neuron cultures. Conclusions/Significance The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn

    Evidence for the gastric cytoprotective effect of centrally injected agmatine

    Get PDF
    Agmatine (decarboxylated arginine) exerts cytoprotective action in several tissues, such as in the brain, heart or kidneys, but there is still controversy over the effects of agmatine on the gastric mucosa. The aim of the present study was to reveal the potential gastroprotective action of agmatine by using an acid-independent ulcer model to clarify which receptors and peripheral factors are involved in it. Gastric mucosal damage was induced by acidified ethanol. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. It was found that agmatine given intracerebroventricularly (i.c.v., 0.044-220nmol/rat) significantly inhibited the development of ethanol-induced mucosal damage, while in the case of intraperitoneal injection (0.001-50mg/kg i.p.) it had only a minor effect. The central gastroprotective action of agmatine was completely antagonized by mixed alpha2-adrenoceptor and imidazoline I1 receptor antagonists (idazoxan, efaroxan), but only partially by yohimbine (selective alpha2-adrenoceptor antagonist) and AGN 192403 (selective I1 receptor ligand, putative antagonist). It was also inhibited by the non-selective opioid-receptor antagonist naloxone and the selective δ-opioid receptor antagonist naltrindole, but not by β-funaltrexamine and nor-Binaltorphimine (selective μ- and κ-opioid receptor antagonists, respectively). Furthermore, the effect of agmatine was antagonized by bilateral cervical vagotomy and by pretreatment with indomethacin and NG-nitro-l-arginine. Agmatine also reversed the ethanol-induced reduction of gastric mucosal CGRP and somatostatin content, but did not have any significant effect on gastric motor activity. These results indicate that agmatine given centrally induces gastric cytoprotection, which is mediated by central imidazoline I1 receptors, alpha2-adrenoceptors and δ-opioid receptors. Activation of these receptors induces the release of different mucosal protective factors, such as NO, prostaglandins, CGRP and somatostatin by a vagal-dependent mechanism. Alterations of gastric motility are not likely to contribute to the observed protective effect

    Binding of Gemini Bisbenzimidazole Drugs with Human Telomeric G-Quadruplex Dimers: Effect of the Spacer in the Design of Potent Telomerase Inhibitors

    Get PDF
    The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3′-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or n-mers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3)8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties

    Dual alpha2C/5HT1A receptor agonist allyphenyline induces gastroprotection and inhibits fundic and colonic contractility

    Get PDF
    Allyphenyline, a novel α2-adrenoceptor (AR) ligand, has been shown to selectively activate α2C-adrenoceptors (AR) and 5HT1A receptors, but also to behave as a neutral antagonist of α2A-ARs. We exploited this unique pharmacological profile to analyze the role of α2C-ARs and 5HT1A receptors in the regulation of gastric mucosal integrity and gastrointestinal motility
    corecore